

ARSD College, University of Delhi

Model Course Handout/Lesson Plan

Course Name	e : B.	Sc. Pro. Chemistry					
Semester	Course Code	Course Title		Lecture (L)	Tutorial (T)	Practical (P)	Credit (C)
II	Chemistry DSC-C 2	Periodic Properties Chemical bonding	and	2			2
Teacher/Instructor(s)		Dr. Shivangi Sharma					
Session		2022-2023					

Course Objective:

The course discusses the periodicity in properties with reference to the s, p and d block, which is
necessary in understanding their group chemistry. It provides basic knowledge about ionic,
covalent and metallic bonding underlining the fact that chemical bonding is best regarded as a
continuum between the three cases. It provides an overview of hydrogen bonding and van der
Waal's forces which influence the melting points, boiling points, solubility and energetics of
dissolution of compounds.

Learning Outcomes

By the end of the course, the students will be able to:

• Understand periodicity in ionization enthalpy, electron gain enthalpy, electronegativity and enthalpy of atomization.

• Understand variability in oxidation state, colour, metallic character, magnetic and catalytic properties and ability to form complexes

• Understand the concept of lattice energy using Born-Landé expression.

- Draw Born Haber Cycle and analyse reaction energies.
- Draw the plausible structures and geometries of molecules using VSEPR theory.
- Understand and draw MO diagrams (homo- & hetero-nuclear diatomic molecules).

• Understand the importance and applications of hydrogen and van der Wall bonding. Lesson Plan:

S. NO.	Learning Objective	Lecture No.	Topics to be covered	
Ι		1-2	Electronic configurations of the atoms.	
		3-4	Stability of half-filled and completely filled orbitals	
		5-6	concept of exchange energy, inert pair effect.	
		7-8	General group trends of s, p and d block elements with special reference to Ionization Enthalpy	
		9-10	Electron Gain Enthalpy, Electronegativity,	

			Enthalpy of Atomization, oxidation state		
		11-12	colour, metallic character, magnetic and catalytic properties, ability to form complexes		
II		13-14	Ionic Bonding: General characteristics of ionic bonding, Lattice Enthalpy and Solvation Enthalpy and their relation to stability and solubility of ionic compounds		
		15-16	Born-Lande equation for calculation of Lattice Enthalpy (no derivation)		
		17-18	Born-Haber cycle and its applications, polarizing power and polarizability		
	Chemical Bonding	19-20	Fajan's rules, ionic character in covalent compounds, bond moment, dipole moment and percentage ionic character		
		21-22	Covalent Bonding : Valence Bond Approach, Hybridization and VSEPR Theory with suitable examples		
		23-24	Concept of resonance and resonating structures in various inorganic and organic compounds, Molecular Orbital Approach: Rules for the LCAO method		
		25-26	bonding, nonbonding and antibonding MOs and their characteristics for s-s, s-p and p-p combinations of atomic orbitals		
		27-28	MO treatment of homonuclear diatomic molecules of 1_{st} and 2_{nd} periods (including idea of s-p mixing) and heteronuclear diatomic molecules such as CO, NO and NO ₊ .		
		29-30	Brief introduction to Metallic Bonding, Hydrogen Bonding, van der Waal's Forces		

Evaluation Scheme:

No.	Component	Duration	Marks	
	Internal Assessment			
1	• Quiz			
1.	Class Test		20	
	Attendance			
	Assignment			
2.	End Semester Examination	2 hr	60	

Details of the Course				
Unit	Contents	Contact Hours		
1 Periodic Properties	Electronic configurations of the atoms. Stability of half-filled and completely filled orbitals, concept of exchange energy, inert pair effect. General group trends of s, p and d block elements with special reference to Ionization Enthalpy, Electron Gain Enthalpy, Electronegativity, Enthalpy of Atomization, oxidation state, colour,	12		

	metallic character, magnetic and catalytic properties, ability complexes	to form	
2 Chemical Bonding	 Ionic Bonding: General characteristics of ionic bonding, Enthalpy and Solvation Enthalpy and their relation to stabi solubility of ionic compounds, Born-Lande equation for calcu Lattice Enthalpy (no derivation), Born-Haber cycle and its appl polarizing power and polarizability, Fajan's rules, ionic char covalent compounds, bond moment, dipole moment and pe ionic character. Covalent Bonding: Valence Bond Approach, Hybridizat VSEPR Theory with suitable examples, Concept of resona resonating structures in various inorganic and organic com Molecular Orbital Approach: Rules for the LCAO method, I nonbonding and antibonding MOs and their characteristics for and p-p combinations of atomic orbitals, MO treatment of hom diatomic molecules of 1st and 2nd periods (including idea mixing) and heteronuclear diatomic molecules such as CO, NO+. Brief introduction to Metallic Bonding, Hydrogen Bonding, Waal's Forces 	lity and lation of ications, racter in rcentage ion and nce and npounds, bonding, s-s, s-p onuclear a of s-p NO and	18
		Total	30
Suggested I	Books:	1	
Sl. No.	Name of Authors/Books/Publishers Yea Publication Publication		on/Repri
1	Huheey, J.E.; Keiter, E.A., Keiter; R. L.; Medhi, O.K. (2009),Inorganic Chemistry- Principles of Structure and Reactivity,Pearson Education)9
2	Shriver, D.D.; Atkins, P.; Langford, C.H. (1994), Inorganic Chemistry 2nd Ed., Oxford University Press.	199	94
3	Atkins, P.W.; Overton, T.L.; Rourke, J.P.; Weller, M.T.; Armstrong, F.A. (2010) Inorganic Chemistry, 5th Edition, W	20	10

Armstrong, F.A. (2010), Inorganic Chemistry, 5th Edition, W.

Lee, J.D.; (2010), Concise Inorganic Chemistry, Wiley India

Douglas, B.E.; McDaniel, D.H.; Alexander, J.J. (1994), Concepts and Models of Inorganic Chemistry, John Wiley &

H. Freeman and Company.

2010

2010

1994

3

4

5

Sons.

6	Wulfsberg, G (2002	
	Private Limited	1.	
7		Miessler, G.L.; Fischer P.J.; Tarr, D. A. (2014), Inorganic Chemistry, 5th Edition, Pearson.	
Mode of Evaluation:		Internal Assessment / End Semester Exam	